Radioaallot

infrapuna-aaltoja pidemmät sähkömagneettiset aallot
Tämä artikkeli kertoo sähkömagneettisen säteilyn osa-spektristä; radiotaajuuksisesta osasta, eli radioaalloista. Radiotaajuuksien tarkemmasta osioinnista, tällä samalla radiotaajuusspektrillä, kertoo Radiotaajuusalueet.

Radioaallot ovat sähkömagneettisia aaltoja, joiden taajuusspektri on määrittelijästä riippuen 30–3 000 hertsistä noin 300–3 000 gigahertsiin (GHz) ja aallonpituus millimetreistä kymmeniin tuhansiin kilometreihin.[1] Periaatteessa radioaaltoja ovat kaikki tätäkin pidemmät (pienitaajuisemmat) sähkömagneettiset aallot.[2](s. 40)

Äänen välittäminen radioaaltojen avulla. Kuvan keskellä olevat 'amplitude- ja frequence modulation' ovat vaihtoehtoja - molemmat eivät kuulu samaan siirtotiehen. Modulointi tapahtuu lähetysasemalla; kuva visualisoi sitä, miltä radioaallot 'näyttävät' eri modulaatioilla.

Radioaallot eivät ole vain ihmisen tuottamia radiolähetysten lähetysaaltoja, sillä radioaaltoja on ympärillämme myös luonnostaan; kaikki kappaleet, joiden lämpötila on absoluuttista nollapistettä korkeampi, emitoi radioaaltoja.[2](s. 40) Katso; mustan kappaleen säteily.

Luonnolliset säteilylähteet, kuten salamat, Aurinko ja pulsarit – kuten myös ihmiskeho – tuottavat radiotaajuusalueen sähkömagneettista säteilyä.[2][3][1]

Sähkömagneettinen säteily yleisestiMuokkaa

Sähkömagneettisen säteilyn energia on suoraan verrannollinen säteilyn taajuuteen, ja kääntäen verrannollinen aallonpituuteen. Sähkömagneettisen kentän sähkömagneettisen säteilyn yksittäisen säteilykvantin — eli fotonin — energia on tyhjiössä taajuusriippuvainen vakio. Kuiva ilma on radioaalloille käytännössä tyhjiöön verrattava väliaine. Tyhjiössä sähkömagneettisen kentän energia jakautuu tasan magneetti- ja sähkökentän kesken. Se mikä ei ole vakio, on säteilyn intensiteetti, eli pinta-alayksikölle osuvien kvanttien määrä aikayksikössä. Intensiteetti määritellään yleensä yhden neliömetrin alalle [2](s. 42)

Energia: E = h · f, jossa h on Planckin vakio 6,626196 · 10-34 Js ja f on taajuus. Kvantilla on myös liikemäärämomentti p, joka on yhtä kuin h ÷ aallonpituus.[2](s. 42, 45)

Sähkömagneettinen aalto hidastaa kulkuaan väliaineessa, jolloin samalla sen aallonpituus lyhenee ja taajuus kasvaa. Sähkömagneettisen aallon nopeus väliaineessa riippuu väliaineen suhteellisesta permeabiliteetista ja suhteellisesta permittiivisyydestä. Koaksiaalikaapelissa nopeus hidastuu noin 2/3:saan.[2](s. 43)

Sähkömagneettisen aallon nopeus tyhjiössä on yhtä kuin valonnopeus, eli 299 792 458 m/s. Likiarvo 300 000 000 m/s on riittävä useimmissa tapauksissa. Aallonpituus saadaan jakamalla nopeus taajuudella. 300 MHz:n aallonpituus, on yksi metri; 300 ÷ 300 MHz = 1 m. Taajuuden yksikkö Hertsi (Hz) on 'aaltoa'/sekunti. Kun jaamme 300 taajuudella megahertseissä, saamme aallonpituuden suoraan metreinä.[2](s. 43)

Radioaaltojen historiaaMuokkaa

Pääartikkeli: Radio#historia

Radioaaltojen olemassaolon ennusti skotlantilainen matemaattinen fyysikko James Clerk Maxwell vuonna 1867. Katso Maxwellin yhtälöt.

Maxwellin teorian todisti oikeaksi Heinrich Hertz, joka ei kuitenkaan nähnyt radioaalloilla mitään hyötypotenttiaalia.

Italialainen keksijä Guglielmo Marconi kehitti ensimmäiset käytännön radiolähettimet ja -vastaanottimet noin v. 1894–1895.

Pitkiä ja matalataajuisia 30–300 kilohertsin radioaaltoja käytettiin 1920- ja 1930-lukujen varhaisissa yleisradiolähetyksissä. Yleisradion radiolähetykset alkoivat vuonna 1926 ja TV-lähetykset vuonna 1955[1]. Nykyisin yleisradiotoiminnassa käytetään yleisesti 87–108 megahertsin taajuisia radioaaltoja (Suomessa ja Länsi-Euroopassa 87,5–108 MHz[4]).

HyödyntäminenMuokkaa

Pääartikkeli: Radio

Lähes kaikki langattomat yhteydet[a] perustuu radioaaltojen käyttöön. Radioaaltoja hyödyntäviä laitteita ovat muun muassa televisio, radio, WLAN- ja muut langattomat tiedonsiirtolaitteet, bluetooth-laitteet, langattomat kuulokkeet ja matkapuhelimet.[1] Sen sijaan television kaukosäädin toimii pääsääntöisesti infrapuna-aaltoalueella.

Radioaalloilla voidaan välittää singnaaleja radioaaltoa moduloimalla. Yksinkertaisin radiotoiminnassa käytettävä modulaatio on amplitudimodulaatio (AM) ja yleisin taajuusmodulaatio (FM).

 
Radiolähetyksissä käytettäviä amplitudimoduloituja (AM) ja taajuusmoduloituja (FM) radioaaltoja.

Radiovastaanottimen pitää tukea lähetyksessä käytettyä modulaatiota kyetäkseen vastaanottamaan lähetykstä.

Pääartikkeli: Radio

TuottaminenMuokkaa

Katso: Radiolähetin

 
Radioaaltojen eteneminen lähetysantennista (puoliaaltodipoliantennista). Sähkökenttä on suorasss kulmassa etenemissuuntaan nähden. Magneettikenttää ei näytetä, mutta se olisi suorassa kulmassa etenemissuuntaan ja sähkökenttään nähden.
 
Kuvaaja maatasoantennin säyeilykuviosta. Antenni on musta pystyviiva keskellä kuvaa. Vaihekaavio alhaalla oikealla; kentät (sähkökenttä (E), magneettikenttä (H)) ovat suorassa kulmassa toisiaan ja etenemissuuntaa vasten.

Radio(aalto)lähetin muodostaa käyttötarkoituksensa mukaisen (määrätaajuinen radioaalto (kantoaalto), mahdolliset apukantoaallot, informaatio, modulaatio ja teho) sähkömagneettisen kentän, jonka piirissä radioaallot ovat vastaanotettavissa.

Radioaaltoja voidaan lähettää eri polarisaatioilla, kuten esimerkiksi vaaka-, pysty- ja ympyräpolarisaatiolla[4]. Lähetysantenni määrittää polarisaation. Vastaanottimen antenni pitää sovittaa lähetyksen polarisaatioon radioaaltojen mahdollisimman hyvän vastaanottamisen tukemiseksi.

Käytännössä radioaalto synnytetään johtamalla määrätaajuinen vaihtojännite antenniin, joka siirtää energian radioaaltoina etenevään sähkömagneettiseen kenttään.[2]

Radioaaltojen eteneminenMuokkaa

Radioaaltojen liikettä lähettimestä eteenpäin kutsutaan etenemiseksi. Tyhjiössä, johon mittatarkkuuden puitteissa voidaan lukea maan ilmakehä, ympärisäteilevän lähetysantennin kentän signaali vaimenee verrannollisena etäisyyden neliöön lähetysantennista loitonnuttaessa, kun aallot leviävät yhä laajemmalle alueelle.[2][1] Hukkatehoa voidaan minimoida suunta-antennilla.

Radioaaltojen etenemisnopeus riippuu väliaineesta. Tyhjiössä radioaallot etenevät valonnopeudella. Radioaallon aallonpituus saadaan jakamalla radioaallon etenemisnopeus sen taajuudella:

 

missä:

  • v on radioaallon etenemisnopeus (m/s) (tyhjiössä 299 792 458 m/s),
  • f on radioaallon taajuus (Hz).

Aallonpituus muutetaan taajuudeksi vastaavasti jakamalla etenemisnopeus aallonpituudella:

 

Radioaaltojen etenemisessä on kyse energian siirtymisestä paikasta toiseen sähkömagneettisen kentän värähtelyinä.[4]

Kaikki radioaallot eivät etene samalla tavalla. Eritaajuisilla radioaalloilla on erilaiset etenemisominaisuudet maan ilmakehässä; pitkät aallot (engl. long wave, LW, 148,5–283,5 kHz) voivat hajaantua esteiden, kuten vuorten, ympäri ja seurata maan muotoa (maa-aallot). Keskipitkät aallot (engl. medium wave, MW, 526,5–1 606,5 kHz) voivat heijastua ionosfääristä ja palata maahan horisontin ulkopuolelle (taivasallot), jopa toiselle puolelle maapalloa, kun taas lyhyet aallot (engl. short wave, SW, 2 300–26 100 kHz) taipuvat tai hajautuvat hyvin vähän ja kulkevat suoraviivaisesti, joten niiden etenemisetäisyydet rajoittuvat horisonttiin.[2]

Ilmakehä on lähes läpinäkymätön radioaalloille noin 30 GHz:stä (10 mm) noin 20 terahertsiin (15 um) asti. Tämä johtuu radioaaltojen absortoitumisesta ilmakehän vesihöyryyn[2](s. 56)

Paikallisesti radioaaltojen etenemiseen vaikuttaa ilmasto, vuodenaika, vuorokaudenaika ja säätila kuten lämpötila, sade, kosteus, sumu, utu, tuuli ja pilvipeite. Vaikutus ei välttämättä ole negatiivinen. Niin sanotulla hyvällä radiokelillä[b] kantamat voivat moninkertaistua. Myös keinovalaistuksella, pölyllä, kuin pilvikorkeudellakin voi tajuusalueesta riippuen olla enempi-vähempi etenemistä heikentävä vaikutus.[2](s. 56-57)

VastaanottaminenMuokkaa

Katso: Radiovastaanotin

Vastaanotossa otetaan vastaan radioaallon energiaa. Antenni on sovitin sähkömagneettisten aaltojen ja radiovastaanottimen virtapiirien välillä.

 
Vaakapolarisaatioisen radioaallon vastaanottoanimaatio. E = sähkökenttä ja V = antenniin indusoituva jännite.

Radiovastaanottimen pitää tukea lähetystaajuutta ja lähetyksessä käytettyä modulaatiota kyetäkseen vastaanottamaan lähetykstä.

Vastaanotossa saatta olla tarpeen ottaa huomioon myös lähetetyn radioaallon polarisaatio vastaanoton varmistamiseksi. Tämä on lähes välttämätöntä maanpäällisiä TV-lähetyksiä vastaanotettaessa.

TermistöäMuokkaa

  1. langaton yhteys; kiinteän yhteyden (langallisen yhteyden) vastakohta; langattomassa yhteydessä informaatio ei kulje sähköjohtimessa, aaltoputkessa tai muussa vastaavassa, vaan informaatio kulkee radioaallossa, laasersäteessä, infrapuna-aallossa tai muussa johdottomassa siirtotiessä
  2. radiokeli; "ilmiö johtuu ilmakehän yläosiin kesäaikaan syntyvästä heijastavasta kerroksesta, jonka myötä radioasemia voi kuulua parin tuhannen kilometrin päästä". Yle Areena : Mitä tarkoitetaan hyvällä radiokelillä?

Termistön lähteet

Katso myösMuokkaa

LähteetMuokkaa

  1. a b c d e Radioaallot ympäristössämme Säteilyturvakeskus. Viitattu 1.10.2021.
  2. a b c d e f g h i j k l [https://urn.fi/URN:ISBN:978-951-25-2503-4 DIGITAALINEN TAISTELUKENTTÄ - informaatioajan sotakoneen tekniikka, kolmas uusittu laitos] urn.fi. Viitattu 14.10.2021.
  3. Radio source (astronomy) Encyclopedia Britannica. Viitattu 15.11.2018. (englanniksi)
  4. a b c Radioaaltojen etenemismuodot Suomen kolmella kansainvälisellä yleisradioalueella Pulkkinen, Lauri-Pekka Johannes (2019) urn.fi. Viitattu 2.10.2021. tarvitaan parempi lähde
  5. Mitä tarkoitetaan hyvällä radiokelillä? areena.yle.fi. Arkistoitu 13.8.2020. Viitattu 18.10.2021.
  6. Radiokeli tieteentermipankki.fi. Viitattu 18.10.2021.

KirjallisuuttaMuokkaa

Aiheesta muuallaMuokkaa