Ksylitoli

kemiallinen yhdiste

Ksylitoli eli koivusokeri[2] on sokerialkoholi eli polyoli. Ksylitolin E-koodi on E967 ja se on hyväksytty EU:ssa elintarvikelisäaineeksi.[3]

Ksylitoli
Tunnisteet
IUPAC-nimi (2R,3R,4S)-1,2,3,4,5-pentahydroksipentaani
CAS-numero 87-99-0
PubChem CID -
SMILES C(C(C(C(CO)O)O)O)O
Ominaisuudet
Molekyylikaava C5H12O5
Moolimassa 152,15 g/mol
Ulkomuoto Vaalea kiteinen aine[1]
Sulamispiste 92–96 °C[1]
Kiehumispiste 216 °C[1]
Tiheys 1,52 g/cm3
Liukoisuus veteen vesiliukoinen (63 g/100 g vettä, 20 °C), vähäliukoinen etanoliin ja metanoliin[1]

Ksylitolia käytetään vähäkalorisena ja monille mikrobeille energiaksi kelpaamattomana makeutusaineena muun muassa purukumeissa.[4] Ksylitolia käytetään myös kosteudensäilyttäjänä esimerkiksi hammastahnoissa.[4]

Ksylitolin makeutusteho on 80–100 prosenttia pöytäsokerin eli sakkaroosin tehosta.[5] Ksylitolin liukeneminen veteen sitoo energiaa aiheuttaen viileän suutuntuman[4].

Ksylitolilla makeutettujen tuotteiden kuten purukumien, pastillien tai hammastahnan käytön esitetään usein estävän myös käyttäjänsä hammasmätää eli kariesta. Ksylitolin suojaavuudesta ei ole olemassa kuitenkaan vahvaa tieteellistä näyttöä[6]. Ksylitolin pitkäaikaiskäytön on myös havaittu johtavan hammasmätää aiheuttavan Streptococcus mutans -bakteerin ksylitolille vastustustuskyisiten kantojen kehittymiseen[7] Ksylitolipurukumi ei vähennä suun bakteereita myöskään yhtä tehokkaasti kuin mehiläisen tuottamaa kittivaha sisältävä purukumi.[8] Niin ikään polyoleihin lukeutuva erytritolikin saattaa ehkäistä kariesta ksylitolia paremmin.[9].

Ksylitolin raaka-ainetta ksylaania saadaan muun muassa koivuista, maissista ja pyökeistä. Ksylitolia esiintyy myös hieman esimerkiksi hedelmissä ja kasviksissa. Sitä muodostuu vähän myös ihmiskehossa.[4]

Historia muokkaa

1891 Emil Fischer ja hänen assistenttinsa Rudolf Stahel Saksasta eristivät pyökistä aineen, joka nimettiin saksaksi nimellä xylit eli "ksyliitti". Ranskalainen tutkija M. G. Bertrand eristi samana vuonna ja itsenäisesti vehnän ja kauran oljista ainetta, joka nimettiin ksylitoliksi.[10]

1950-luvun puoliväliin mennessä ksylitolin pääteltiin olevan ihmiskehossa luonnostaan esiintyvä aineenvaihduntatuote. Tämä todistettiin pian tämän jälkeen eristämällä ksylitolia ihmiskehosta.[10]

Ksylitolin käyttöä hiilihydraattilähteenä on tutkittu jo 1960-luvun alusta asti, jolloin sen oli todettu muun muassa sopivan diabeetikoille sakkaroosin korvaajaksi. Turun yliopiston Hammaslääketieteellinen laitos aloitti 1970 ns. Turun Sokeritutkimukset, joiden tavoitteena oli löytää sakkaroosille uusia luonnollisia vaihtoehtoja. 1971 Turun yliopiston professorit Arje Scheinin ja Kauko K. Mäkinen julkaisivat artikkelin, jossa vertailtiin ksylitolin ja muiden sokerien vaikutusta syljen kemiaan ja karieksen syntyyn. Havaittiin, että ksylitoli poikkesi muista makeutusaineista: sakkaroosia ja fruktoosia saaneilla karies lisääntyi, mutta ksylitolia saaneilla se väheni. Saatiin ensimmäiset viitteet siitä, että ksylitoli ehkäisee kariesta. Sitten Turussa aloitettiin ns. Turun suuri sokeritutkimus, jossa ksylitolin todettiin vähentävän hampaiden reikiintymistä. Hellasta pyydettiin mukaan tutkimuksiin ja se valmisti muutaman vuoden ajan ksylitolipurukumeja pelkästään tutkimuskäyttöön.[11] 1975 Turun tutkimuksen tulokset julkaistiin ja tutkimuksessa käytetty purukumi, Xylitol-Jenkki, tuotiin Suomen ja Yhdysvaltain markkinoille.[12] Purukumin tuotannossa auttoi Suomen Sokeri Oy:n kehittämä prosessi, joka sopi ksylitolin massatuotantoon, sillä aiemmin sen tuottaminen oli kallista.[11]

1994 Ylivieskassa aloitetussa Äiti–lapsi-tutkimuksessa seurattiin ensimmäistä kertaa kliinisesti äidin ksylitolin käytön vaikutuksia pikkulasten Streptococcus mutans -tartuntoihin ja kariekseen. Tutkimuksessa osoitettiin, että äidin säännöllinen ksylitolipurukumin käyttö estää lasten kariesta merkittävästi.[13]

Joulukuussa 1994 ksylitolituotteet vapautettiin Suomessa makeisverosta Vatialan koulun oppilaiden kolmen vuoden työn tuloksena.[12]

1996 oululainen apulaisprofessori Matti Uhari ja kollegat osoittivat ensi kerran, että purukumin säännöllinen käyttö hillitsee korvatulehdusta aiheuttavien bakteerien kasvua ja estää niiden tarttumisen nenänieluun.[14][15]

Virossa 1996–2000 tehty ksylitolitutkimus on ensimmäinen, jossa selvitettiin ksylitolipastillin säännöllisen käytön vaikutusta kariekseen. Tutkimus vahvisti sen, että ksylitolipastilli ehkäisee kariesta yhtä tehokkaasti kuin täysksylitolipurukumi.[16]

Kemia muokkaa

 
Fischerin projektio.

Ksylitoli on lievästi hygroskooppinen,[17] sen vesiliuokset ovat lievästi happamia ja sen lämpöarvo on 16,96 kJ/g. Ksylitoli liukenee veteen endotermisesti eli sitä viilentäen. Liukenemisen entalpia on noin –35 cal/g. Ksylitoli on optisesti inaktiivinen, sillä se on akiraalinen. Ksylitolin 10 massaprosenttisen 25 °C vesiliuoksen taitekerroin on 1,3471 ja 50 % liuoksen taitekerroin on 1,4132. Ksylitolissa ei ole reaktiivista karbonyyliryhmää, joten se ei karamellisoidu.[4]

Valmistus muokkaa

 
Ksylitolikiteitä.

Ksylitolia voidaan tuottaa ksylaanirikkaista kasveista kuten koivuista, mantelin kuorista, oljista, maissintähkistä,[4] kauran kuoresta,[18] tai sellun tuoton sivutuotteista. Ksylaanipitoiset materiaalit hajotetaan ja ksylaani hydrolysoidaan ksyloosiksi. Ksyloosi erotetaan kromatografisesti ja se vedytetään nikkelipohjaisella katalyytillä ksylitoliksi. Vaihtoehtoisesti vedytys suoritetaan ensin ja sitten vasta muodostuneen ksylitolin erottelu. Saatu ksylitoli puhdistetaan uudelleen kiteyttämällä.[4]

Ksylitolia voidaan teoriassa myös tuottaa mikrobikäymisen avulla.[4]

Aineenvaihdunta muokkaa

Ksylitolissa on ravintoenergiaa noin 2,4 kcal/g eli 10 kJ/g, mutta todellinen arvo voi vaihdella. Ksylitolin glykemiaindeksi on noin 13 (glukoosi = 100). Ihmisillä noin 50 % ksylitolista imeytyy suolistosta – loput menevät suolistobakteerien energiaksi, josta kuitenkin pienempi osa poistuu muuntumattomana ulosteessa. Virtsan mukana poistuu alle 2 g ksylitolia per 100 g syötyä ksylitolia. Ksylitoli ei vaikuta merkittävästi kehon insuliinin eritykseen. Ksylitoli käsitellään ihmisillä lähinnä maksassa, jossa se dehydrogenoituu solulimassa NAD-riippuvaisella polyolidehydrogenaasilla (EC-numero 1.1.1.B19) D-ksyluloosiksi. Tämä fosforyloituu ksylulokinaasilla (EC 2.7.1.17) D-ksyluloosi-5-fosfaatiksi, joka on pentoosifosfaattireitin tuote.[19] Ksylitolia myös muodostuu ihmiskehossa aineenvaihduntatuotteena itsestään ilman ksylitolin ulkoista saantia arviolta 2–15 g per päivä.[20]

Terveysvaikutukset muokkaa

Bakteerit, plakki ja hammasmätä muokkaa

Euroopan unioni hyväksyi vuonna 2009 ksylitolin markkinoinnissa käytettävän terveysväitteen, jonka mukaan täysksylitolipurukumin on osoitettu vähentävän hammasmätää aiheuttavaa hammasplakkia, jos sitä käytetään 2 palaa 3–5 kertaa päivässä aterioiden jälkeen. Käytön on oltava säännöllistä, jotta plakin määrä alenisi. Terveysväitteen myöntäminen perustuu lähinnä Cloetta Oy:n teettämiin kliinisiin tutkimuksiin, kuten suomalaisten tutkijoiden johtamaan Väli-Amerikan Belizessä tehtyyn tutkimukseen, jonka tuloksena oli, että Cloettan ksylitolipurukumi oli tehokkaampi kuin muiden valmistajien.[21]

Ksylitoli lisää syljen tuottoa sen aikaa, kun sitä on suussa. Sylki neutraloi bakteerien tuottamia happoja ja vähentää hammaseroosiota remineralisoimalla hammaskiillettä.[22] Ksylitoli estää esimerkiksi hampaita syövyttäviä happoja tuottavien Streptococcus mutans ja Streptococcus sobrinus -bakteerien energiantuottoa.[23] Osa kariesta aiheuttavista bakteereista kykenee kuitenkin hyödyntämään ksylitolia ravinnokseen[22].

Ksylitolin bakteereille haitallinen vaikutus johtuu siitä, että kyseiset bakteerit fosforyloivat sisäänsä ottaman ksylitolin ksylitoli-5-fosfaateiksi fosfoenolipyruvaatti-fosfotransferaasi-entsyymijärjestelmällä. Ksylitoli-5-fosfaatit puolestaan estävät bakteereille energiaa tuottavaa glykolyysiä, jossa muodostuisi sivutuotteena happoja. Lisäksi ksylitoli-5-fosfaattien kertyessä bakteerien sisään ne defosforyloivat niitä samalla entsyymijärjestelmällä takaisin ksylitoliksi, jonka ne poistavat ulkopuolelleen. Tämä ksylitolin käsittely vie bakteerilta energiaa.[23]

Ksylitolin säännöllinen pitkäaikaiskäyttö suosii kuitenkin kariesta ensisijaisesti aiheuttavan Streptococcus mutans -bakteerin ksylitolille vastustustuskyisiä kantoja. Jatkuvasti ksylitolia käyttävistä noin 80 %:lla on siksi suussaan ksylitolille sietokykyisiä S. mutans -kantoja. Näiden taudinaiheuttamiskyky saattaa olla heikompi kuin sietokyvyttömillä kannoilla, mutta tutkimusnäyttö tästä on ollut ristiriitaista.[7] Ksylitolin hammasterveyttä edistävästä vaikutuksesta ei ollut kertynyt vahvaa tieteellistä näyttöä vielä vuoteen 2015 mennessä tutkimusten huonon laadun ja vähäisyyden vuoksi.[6][24]

Ksylitolipastillit eivät ole yhtä tehokkaita kuin ksylitolia sisältävä purukumi. Toisaalta ksylitolipurukumikaan ei ole välttämättä tehokas menetelmä, koska vaikuttavan annoksen saavuttamiseksi pitäisi pureskella päivittäin suuria määriä purukumia. Aikuisten kohdalla ksylitolilla näyttäisi olevan myönteinen vaikutus ainoastaan juurikarieksen esiintyvyyteen. Ksylitolin pitkäaikaiskäyön aiheuttamaa merkittävää reikiintymisen vähentymistä on havaittu kuitenkin esimerkiksi sokeripitoisilla juomilla ruokituilla vauvoilla.[25]

Jos vanhemmat käyttävät ksylitolia vauvan hampaiden puhkeamisen aikaan, vähenee kariesta aiheuttavien mutans-streptokokkien siirtyminen heidän suustaan lapsen suuhun[26]. Myös äidin ksylitolin käyttö raskauden aikana voi vähentää lapsen kariesta aiehuttavien bakteerien siirtymistä äidistä lapseen merkittävästi ja pitkäaikaisesti syntymän jälkeen. Riski oli jopa 70 % alempi lapsen kahden ensimmäisen ikävuoden aikana.[13][27]

Laksatiiviset vaikutukset muokkaa

Ksylitoli on laksatiivi. Aikuiset sietävät ksylitolia usein hyvin noin 40 gramman päiväannoksina, mutta yli 100 g per päivä voi aiheuttaa ripulia. Lapsilla yli 45 g päiväannokset voivat aiheuttaa ripulia.[22] Ihmiset eivät pysty käyttämään ksylitolia tehokkaasti ravinnoksi, joten se päätyy osin muuntumattomana suolistoon. Suolistobakteerit tuottavat 50–75 prosentista suolistoon päätyneestä ksylitolista itselleen energiaa.[19] Samalla suolistobakteerit vapauttavat lyhyitä rasvahappoja kuten propionaattia, mutta myös kaasuja kuten vetyä, metaania ja hiilidioksidia. Suolistossa ksylitoli myös lisää osmoottisesti veden siirtymistä suolistoon.[20] Vaikutukset ovat samat joillain muillakin polyoleilla kuten sorbitolilla, joka on noin 2 kertaa ksylitolia laksatiivisempi.[28] Sen sijaan erytritoli ei ole niin laksatiivinen sokerialkoholi kuin ksylitoli.[9]

Korvatulehdus muokkaa

Ksylitolin käyttö missä tahansa muodossa voi vähentää korvatulehduksen riskiä 22–30 % alle 12-vuotiailla lapsilla suhteessa ksylitolia käyttämättömiin saman ikäisiin lapsiin.[15]

Myrkyllisyys eläimille muokkaa

Koirille jo 0,1 grammaa ksylitolia per painokilo voi olla hengenvaarallinen annos. Koirilla ksylitoli aiheuttaa 2,5–7 kertaa suuremman insuliinin erittymisen vereen suhteessa samaan määrän glukoosia, joka taas johtaa liian alhaiseen verensokeriin eli hypoglykemiaan. Tästä aiheutuu 30–60 min kuluttua ksylitolin syömisestä oksentelua, jota voi seurata muun muassa ataksia ja lihasheikkous. Suuret annokset voivat aiheuttaa maksavaurion ja jopa kuoleman.[29]

Ksylitoli on verrattain turvallinen aine muun muassa kissoille,[30] hevosille, rotille ja reesusapinoille.[29]

Ksylitolisuositukset muokkaa

Suomen Hammaslääkäriliitto suosittelee käyttämään ksylitolia purukumimuodossa tai muissa muodoissa säännöllisesti aterioiden jälkeen. Suositeltu päiväannos on vähintään 5 grammaa eli noin 6 täysksylitolipurukumia. Käytetyssä ksylitolituotteessa saa olla vain vähäinen määrä happoja, ja ei lainkaan sakkaroosia, glukoosia, tärkkelyssiirappia, fruktoosia eikä muita helposti fermentoituvia hiilihydraatteja. Muita polyoleja, kuten sorbitolia, mannitolia ja maltitolia voi tuotteessa olla.[31][32] Hammaslääkäriliiton mukaan ksylitoli ei korvaa hampaiden harjausta fluorihammastahnalla.[32]

Lääkäriseura Duodecimin 2014 voimaan tulleiden Käypä hoito -suositusten mukaan ksylitolin säännöllisen käytön hyödyllisyyden puolesta karieksen ehkäisyssä on kohtalainen tutkimusnäyttö, erityisesti siinä vaiheessa kun hampaat ovat puhkeamassa. Kyse ei ole sokerin korvaamisesta ksylitolilla vaan ksylitolin lisäämisestä ruokavalioon.[33]

Lähteet muokkaa

Viitteet muokkaa

  1. a b c d Nabors, s. 350
  2. Nadja Mikkonen: Ksylitolia on syötetty koko kansalle – mitä koivusokeribuumista jäi käteen? YLE Uutiset. 14.1.2019. Viitattu 6.3.2019.
  3. Euroopan yhteisöjen komission direktiivi 2008/60/EY (PDF) (Elintarvikkeissa sallittujen makeutusaineiden erityisistä puhtausvaatimuksista) eur-lex.europa.eu. 18.6.2008. Viitattu 12.9.2009. Suomi
  4. a b c d e f g h Nabors, s. 350–354
  5. Nabors, s. 215
  6. a b P Riley et al: Xylitol-containing products for preventing dental caries in children and adults. Cochrane Database of Systematic Reviews, 26.3.2015. doi:10.1002/14651858.cd010743.pub2. ISSN 1465-1858. Artikkelin verkkoversio.
  7. a b EM Söderling: Xylitol, mutans streptococci, and dental plaque. Advances in Dental Research, 2009, 21. vsk, nro 1, s. 74–78. PubMed:19717413. doi:10.1177/0895937409335642. ISSN 1544-0737. Artikkelin verkkoversio.
  8. Tulsani, S.G.; Chik-kanarasaiah, N.; Sid-daiah, S.B. & Krish-namurthy, N.H. 2014. The effect of Propo-lis and Xylitol chew-ing gums on salivary Streptococcus mu-tans count: a clinical trial
  9. a b P Cock et al: Erythritol Is More Effective Than Xylitol and Sorbitol in Managing Oral Health Endpoints. International Journal of Dentistry, 2016, nro 2016, s. 9868421. PubMed:27635141. doi:10.1155/2016/9868421. ISSN 1687-8728. Artikkelin verkkoversio.
  10. a b KK Mäkinen: The rocky road of xylitol to its clinical application. Journal of Dental Research, kesäkuu 2000, 79. vsk, nro 6, s. 1352–1355. PubMed:10890712. doi:10.1177/00220345000790060101. ISSN 0022-0345. Artikkelin verkkoversio.
  11. a b Kupila, Sanna (toim): Sisua, siloa ja sinappia – Merkkituotteita Turusta (Turku), s. 122–129. Turun Maakuntamuseo, 2004. ISBN 9789515950901.
  12. a b Ksylitolin historia Cloetta. Arkistoitu . Viitattu 7.4.2015.
  13. a b E Söderling et al: Influence of maternal xylitol consumption on mother-child transmission of mutans streptococci: 6-year follow-up. Caries Research, toukokuu 2001, 35. vsk, nro 3, s. 173–177. PubMed:11385196. doi:10.1159/000047452. ISSN 0008-6568. Artikkelin verkkoversio.
  14. M Uhari et al: Xylitol chewing gum in prevention of acute otitis media: double blind randomised trial.. BMJ, 9.11.1996, 313. vsk, nro 7066, s. 1180–1184. PubMed:8916749. ISSN 0959-8138. Artikkelin verkkoversio.
  15. a b A Azarpazhooh, HP Lawrence, PS Shah: Xylitol for preventing acute otitis media in children up to 12 years of age. Cochrane Database of Systematic Reviews, 3.8.2016. doi:10.1002/14651858.cd007095.pub3. ISSN 1465-1858. Artikkelin verkkoversio.
  16. P Alanen, P Isokangas, K Gutmann: Xylitol candies in caries prevention: results of a field study in Estonian children. Community Dentistry and Oral Epidemiology, kesäkuu 2000, nro 3, s. 218–224. PubMed:10830649. ISSN 0301-5661. Artikkelin verkkoversio.
  17. Nabors, s. 252
  18. T Kiviranta: Fazer ryhtyy valmistamaan ksylitolia kauran kuoresta – investoi 40 miljoonaa euroa Lahteen Maaseudun Tulevaisuus. Arkistoitu . Viitattu 8.3.2019.
  19. a b G Livesey: Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutrition Research Reviews, joulukuu 2003, 16. vsk, nro 2, s. 163–191. PubMed:19087388. doi:10.1079/NRR200371. ISSN 1475-2700. Artikkelin verkkoversio.
  20. a b Nabors, s. 355–356
  21. EU:n terveysväite | Xylitol.net www.xylitol.net. Viitattu 8.2.2021.
  22. a b c PA Nayak, UA Nayak, V Khandelwal: The effect of xylitol on dental caries and oral flora. Clinical, Cosmetic and Investigational Dentistry, 10.11.2014, nro 6, s. 89–94. PubMed:25422590. doi:10.2147/CCIDE.S55761. ISSN 1179-1357. Artikkelin verkkoversio.
  23. a b H Kakuta et al: Xylitol inhibition of acid production and growth of mutans Streptococci in the presence of various dietary sugars under strictly anaerobic conditions. Caries Research, 2003-11, 37. vsk, nro 6, s. 404–409. PubMed:14571117. doi:10.1159/000073391. ISSN 0008-6568. Artikkelin verkkoversio.
  24. The evidence base for professional and self-care prevention--caries, erosion and sensitivity. Twetman 2015. https://www.researchgate.net/publication/282126649_The_evidence_base_for_professional_and_self-care_prevention_-_caries_erosion_and_sensitivity
  25. NYKYTIETOA KSYLITOLISTA KANSAINVÄLISESTÄ NÄKÖKULMASTA. https://www.theseus.fi/bitstream/handle/10024/226395/Alvarez_Vivian%20Anttalainen_Kajsa.pdf?sequence=2&isAllowed=y
  26. Mikko Puttonen HS: Tutkimus: Ksylitolin tehosta ei ole kunnon todisteita – tulokset ristiriidassa suomalaisten suositusten kanssa Helsingin Sanomat. 26.3.2015. Viitattu 8.6.2024.
  27. Y Nakai et al: Xylitol gum and maternal transmission of mutans streptococci. Journal of Dental Research, tammikuu 2010, 89. vsk, nro 1, s. 56–60. PubMed:19948944. doi:10.1177/0022034509352958. ISSN 1544-0591. Artikkelin verkkoversio.
  28. Nabors, s. 258
  29. a b RD Schmid, LR Hovda: Acute Hepatic Failure in a Dog after Xylitol Ingestion. Journal of Medical Toxicology, 2016-6, 12. vsk, nro 2, s. 201–205. PubMed:26691320. doi:10.1007/s13181-015-0531-7. ISSN 1556-9039. Artikkelin verkkoversio.
  30. Á Jerzsele et al: Effects of p.o. administered xylitol in cats. Journal of Veterinary Pharmacology and Therapeutics, 2018, 41. vsk, nro 3, s. 409–414. doi:10.1111/jvp.12479. ISSN 1365-2885. Artikkelin verkkoversio.
  31. Hammaslääkäriliiton suositukset Hammaslääkäriliitto. Viitattu 7.2.2019.
  32. a b Ksylitoli Hammaslääkäriliitto. Viitattu 7.2.2019.
  33. Pentti Alanen ja Kaisu Pienihäkkinen: Säännöllisen ksylitolipurukumin tai -pastillin käytön vaikutus hampaiden reikiintymiseen ja karieksen varhaisvaiheiden syntyyn ja etenemiseen Duodecim – Käypä hoito. 12.8.2014. Viitattu 6.3.2019.

Aiheesta muualla muokkaa