Avaa päävalikko

Hyperbeli

toiseen asteen käyrä
Hyperbeli on kartioleikkaus.

Hyperbeli on toisen asteen käyrä, joka määritellään seuraavasti:

Hyperbelin muodostavat ne tason pisteet, joiden kahdesta polttopisteestä mitattujen etäisyyksien erotus on vakio. Jos valitaan polttopisteet F1 ja F2, hyperbelin pisteellä X on ominaisuus |X − F1| − |X − F2| = vakio (vertaa ellipsiin). Hyperbeli syntyy myös, kun taso leikkaa kaksiosaisen kartion molempia osakartioita.

Hyperbelin yhtälöMuokkaa

Origokeskinen hyperbeliMuokkaa

Kun suorien   ja   leikkauspiste on origossa, on hyperbelin yhtälö  ,   ja  . Tällöin hyperbelin huiput ovat (−a, 0) ja (a, 0).

Myös käänteislukufunktion kuvaaja on origokeskeinen hyperbeli, jonka toinen haara sijaitsee ensimmäisessä ja toinen kolmannessa neljänneksessä. Suorat, jotka ovat hyperbelien asymptootit, ovat nyt koordinaattiakselit ja ne leikkaavat origossa. Hyperbelien huiput ovat (1,1) ja (-1,-1).

Hyperbeli voidaan esittää hyperbolisten funktioiden avulla myös parametrimuodossa

  , jossa  .

Yleinen hyperbeliMuokkaa

Hyperbeli voidaan koordinaatiston muunnoksella muuttaa muotoon, jossa hyperbelin polttopisteet ovat koordinaattiakselilla. Tämä tapahtuu muodostamalla hyperbelin kertoimista matriisi ja soveltamalla matriisiin sopivaa muunnosta.

LiittohyperbeliMuokkaa

Liittohyperbeli on hyperbelin erikoistapaus, joka on muotoa  .

YksikköhyperbeliMuokkaa

Yksikköhyperbeli on hyperbeli, jossa  , joten hyperbeli on muotoa  .

HyperboloidiMuokkaa

Hyperbeliä vastaava kolmiulotteinen kappale on hyperboloidi.

Katso myösMuokkaa

KirjallisuuttaMuokkaa