Ympyrän keskipiste

Ympyrän keskipiste on geometriassa tason piste, joka on säteeksi kutsutun etäisyyden päässä ympyrän kehän pisteistä. Eräissä yhteyksissä ympyräksi kutsutaan ympyrän kehää [1][2][3] ja toisissa taas ympyrän kehän sisäosia eli ympyräkiekkoa.[4][5][6] Harvemmin katsotaan kehän kuuluvan osana ympyräkiekkoa.[7] Ympyrän keskipiste on osa kiekkoa ja osa ympyrää siten näissä tulkinnoissa. Keskipiste tulitaan tämän ympyrälevyn keskukseksi.

Ympyrän keskipiste O on säteen r matkan päässä ympyrän kehän pisteistä.

Keskipisteen määritysMuokkaa

Keskipisteen konstruoiminenMuokkaa

 
Janan keskinormaalin konstruoiminen. Kolmen pisteen välille vedetään kolmet janat, jotka kaikki puolitetaan omalla keskinormaalilla. Kolme konsyklisen pisteen keskinormaalit leikkaavat toisensa pisteiden kautta kulkevan ympyrän keskipisteessä.

Kolmen pisteen kautta, jotka ovat konsyklisiä, voidaan piirtää ympyrä. Keskipisteen paikka voidaan löytää käyttäen vain harppia ja viivainta. Keskipiste löydetään muodostamalla pisteiden avulla piirretyn kolmion sivujen keskinormaalien leikkauspiste.[8][9]

Ympyrän yhtälöMuokkaa

Tasogeometriassa ympyrän, eli sen kehän, yhtälössä   keskipisteen O koordinaatit näkyvät suoraan  . Avaruusgeometriassa ympyrän yhtälö kirjoitetaan   ja sen keskipisteen koordinaatit ovat  .

Kolme koordinaattipistettäMuokkaa

Jos kolmen pisteen koordinaatit, esimerkiksi kolmion kärjet, ovat konsykliset ja merkitään     ja  , voidaan pisteiden kautta piirretyn ympyrän keskipiste   ilmaista

 

ja

  [9]

missä kertoimet lasketaan determinanteilla

  [9]

ja

  [9]

sekä

  [9]

Merkillinen pisteMuokkaa

Kolmion ympäri piirretyn ympyrän keskipiste on yksi Eulerin suoralla olevista kolmion merkillisistä pisteistä.[10][11]

LähteetMuokkaa

ViitteetMuokkaa

  1. Kurittu, Lassi: Geometria, 2006, s.3
  2. Kurittu, Lassi: Geometria, 2006, s.67
  3. Weisstein, Eric W.: Circle (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)
  4. Väisälä Kalle: Geometria, 1959, s.5
  5. Weisstein, Eric W.: Disk (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)
  6. Weisstein, Eric W.: Open Disk (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)
  7. Weisstein, Eric W.: Closed Disk (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)
  8. Kurittu, Lassi: Geometria, 2006, s.98
  9. a b c d e Weisstein, Eric W.: Circumcircle (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)
  10. Kurittu, Lassi: Geometria, 2006, s.118
  11. Harju, Tero: Geometrian lyhyt kurssi, 2012, s.25