Osittaisderivaatta
Osittaisderivaatta on matematiikassa usean muuttujan funktion derivaatta yhden muuttujansa suhteen annetulla muuttujan arvolla. Osittaisderivaatalla voidaan tutkia, mikä vaikutus yhden muuttujan muutoksella on funktion arvoon varioitavan muuttujan arvon ympäristössä. Sillä on sovelluksia tieteen, tekniikan ja talousteorian aloilla.[1][2]
Johdanto
muokkaaMerkitseminen
muokkaaYksinkertaisuuden vuoksi merkitään usean muuttujan funktiota , jolloin muuttujan x suhteen otettua osittaisderivaatta merkitään esimerkiksi
Osittaisderivoinnin symboli on ja se esiintyy ensimmäisen kerran vuonna 1770 Nicolas de Condorcet'n kirjoituksissa, missä hän käytti osittaisderivaattaa. Nykymuodossaan olevia osittaisderivaatan merkintöjä käytti ensimmäisenä Adrien-Marie Legendre vuonna 1786. Hän hylkäsi ne myöhemmin, mutta Carl Gustav Jacob Jacobi otti sen uudelleen käyttöönsä vuonna 1841.[3]
Esimerkki
muokkaaFunktion kuvaajaa (x,y,z)- koordinaatistossa (kuva vieressä) esittää yhtälö
Kuvaaja esittää kaksiulotteista pintaa kolmiulotteisessa tilassa ja pinnan jokaiseen pisteeseen voidaan asettaa tangenttisuoria äärettömän moneen suuntaan. Tangentit osoittavat pinnan jyrkkyyden eri suunnissa. Kun määritetään pinnan jyrkkyys x-akselin suunnassa, käytetään siihen tangenttia, joka on yhdensuuntainen xz-tason kanssa. Pinnan jyrkkyys x-akselin suunnassa saadaan selville osittaisderivaatalla muuttujan x suhteen
Jyrkkyys riippuu luonnollisesti vielä paikasta (x,y). Valitaan xy-tason pisteeksi (1,1) ja lasketaan osittaisderivaatta siinä kohdassa
Tangentti sivuaa pintaa pisteessä, jossa z-koordinaatti on
eli koordinaattipisteessä (1,1,3). Näin on saatu viereisten kuvaajien mukainen tulos.
Määritelmä
muokkaaMerkitään usean muuttujan arvoja vektoreilla . Kun myös , on funktio reaaliarvoinen usean muuttujan funktio. Tavallisen reaalifunktion derivaatan tapaan osittaisderivaatta on määritelty erotusosamäärän raja-arvona muuttujan suhteen, kun muut muuttujat kohdellaan derivoinnin ajan vakioina.[1][2]
Olkoon pisteen ympäristössä (avoin joukko), jossa funktio on määritelty (ehkä lukunottamatta pisteessä ). Funktion osittaisderivaatta muuttujan suhteen pisteessä on määritelty seuraavasti erotusosamäärään raja-arvon avulla:
Raja-arvo määritetään tämän jälkeen normaalisti funktion raja-arvona. Osittaisderivaattaa, joka on saatu vain kerran derivoimalla, kutsutaan myös ensimmäisen kertaluvun osittaisderivaataksi.
Osittaisderivaattafunktiot
muokkaaOsittaisderivaattafunktio on usean muuttujan funktiolauseke, jolla voi laskea funktion osittaisderivaatan arvon halutussa pisteessä. Osittaisderivaattafunktio on vastaava käsite kuin derivaattafunktio, mutta siinä derivoidaan lauseke vain yhden muuttujan suhteen muiden muuttujien jäädessä vakion asemaan.
Esimerkki
muokkaaGeometriassa ympyräpohjaisen kartion tilavuus V riippuu sen korkeudesta h ja pohjan säteestä r seuraavasti:
Se voidaan tulkita kahden muuttujan funktioksi , jonka osittaisderivaattafunktio muuttujan r suhteen on
- .
Tämä kuvaa kartion tilavuuden muutosta pohjan säteen muuttuessa ja korkeuden pysyessä vakiona.
Osittaisderivaattafunktio, kun derivoidaan muuttujan h:n suhteen on
joka puolestaan kuvaa kartion tilavuuden muutosta korkeuden muuttuessa ja pohjan säteen pysyessä vakiona.
Useamman kertaluvun osittaisderivaatat
muokkaaKertaluvulla ilmaistaan osittaisderivointien lukumäärää. Kolmannen kertaluvun osittaisderivaatta saadaan osittaisderivoimalla funktio yhden muuttujan suhteen ja tämä derivaatta osittaisderivoidaan jonkun muuttujan suhteen ja tämä toiseen kertaan osittaisderivoitu lauseke osittaisderivoidaan kolmannen kerran yhden muuttujansa suhteen. Valitut muuttujat eivät vaikuta kertalukuun.
Toisen kertaluvun osittaisderivaatat
muokkaaToisen kertaluvun osittaisderivaatta voidaan määritellä luonnollisella tavalla derivoimalla useamman muuttujan funktio kahdesti joko saman muuttujan suhteen tai kahden eri muuttujan suhteen. Seuraavassa on muutama esimerkki derivoinnin järjestämiseksi ja osittaisderivaattojen merkitsemisistä. Jos usean muuttujan funktiota merkitään (eli ), niin siitä voidaan muodostaa seuraavanlaiset toisen kertaluvun osittaisderivaatat muuttujien x ja y suhteen:[2]
Merkinnät tarkoittavat, että ensin funktio derivoidaan muuttujan x suhteen ja derivoitu funktio derivoidaan sitten muuttujan y suhteen. Useimmiten osittaisderivaatat ovat identtiset, mutta esimerkiksi epäjatkuvuudet voivat rikkoa symmetrisyyden.[2]
Yleinen merkintätapa
muokkaaKun derivoidaan useasti ja eri muuttujien suhteen, syntyy erilaisia osittaisderivaattoja. Esimerkiksi
on viidennen kertaluvun osittaisderivaatta. Jos derivointijärjestyksellä ei ole tällä kertaa merkitystä, voidaan esitys yksinkertaistaa
Katso myös
muokkaa- Gradientti on eräs suunnattu derivaatta, jossa käytetään osittaisderivointia
- Jacobin matriisi ja Hessen matriisi
Lähteet
muokkaa- ↑ a b c Weisstein, Eric W.: Derivative (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)
- ↑ a b c d e f Weisstein, Eric W.: Partial Derivative (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)
- ↑ Miller, Jeff: Earliest Uses of Symbols of Calculus jeff560.tripod.com. 2004. Viitattu 26.9.2014.
Kirjallisuutta
muokkaa- Pitkäranta, Juhani: Calculus Fennicus – TKK:n 1. lukuvuoden laaja matematiikka (2000–2013) (pdf) Helsinki: Avoimet oppimateriaalit ry. ISBN 978-952-7010-12-9 ISBN 978-952-7010-6 (pdf). Viitattu 8.7.2019.
Aiheesta muualla
muokkaa- Internetix: 7.1 Osittaisderivaatat, katsottu 2.10.2014
- Gustavson: Osittaisderivaatat[vanhentunut linkki], Aalto-yliopisto, 2.10.2014
- Kangaslampi, R.: 6. Osittaisderivaatta 1[vanhentunut linkki], Osittaisderivaatta 2[vanhentunut linkki], 2012
- Silvennoinen, Risto: Luku 3. Raja-arvot. Osittaisderivaatat. (Arkistoitu – Internet Archive), 2010
- Hästö, Peter (Arkistoitu – Internet Archive): Analyysi II (Arkistoitu – Internet Archive), Oulun yliopisto, 2007