Avaa päävalikko
Siniset pisteet A1, B1, A2 ja B2 ovat kollineaariset
Epäkollineaariset pisteet

Kollineaarisuus tarkoittaa geometriassa pistejoukon ominaisuutta, kun ne sijaitsevat kaikki samalla suoralla. Tasogeometriassa kaksi pistettä ovat itsestään selvästi kollineaarisia, sillä kahden pisteen avulla voidaan määrittää suora. Myös suoran omat pisteet ovat itsestään selvästi kollineaarisia.[1] Pistejoukko on epäkollineaarinen, jos kaikki pisteet eivät ole yhteisellä suoralla.[2]

Yhteisellä suoralla olevat pisteet ovat kollineaariset. Tämä voidaan merkitä lyhyesti [3]

KollineaarisuustestejäMuokkaa

Kolme pistettä, tai enemmän, sijaitsevat samalla suoralla vain erityistapauksissa ja kollineaarisuuden voi selvittää eri tavoin.

Kolmas piste   sijaitsee samalla suoralla pisteiden   ja   kanssa, jos

  [1]

Kolme pistettä muodostavat kolmion, jos ne eivät ole kolineaarisia, muuten ne muodostavat suoran. Kolmen pisteen muodostaman kolmion pinta-ala on nolla, jos kolmion kärkinä olevat pisteet ovat kollineaariset. Pinta-ala voidaan laskea determinantin avulla

  [1]

tai evaluoidussa muodossa

  [1]

Kolmas piste on kahden muun kanssa kollineaarinen, jos kolmannen pisteen etäisyys suorasta, jonka kaksi muuta pistettä määrittävät, on nolla. Pisteiden paikkavektoreiden   avulla voidaan ristitulolla laskea pisteen   etäisyys suorasta ja merkitä se nollaksi:

  [1]

Menelauksen lauseMuokkaa

Menelauksen lause: Pisteet R, S, T ovat kolmion ABC sivusuorilla ja ne ovat kollineaariset jos ja vain jos suunnatuilla janoilla

  [4]

Menelauksen lauseessa voivat kaikki kolme pistettä olla kolmion sivusuorilla. Piste on kolmion sivusuoralla, jolloin se voi olla kolmion sivulla tai sivun jatkeella.[5]

TransversaalilauseMuokkaa

Jos   ja   ovat kollineaarisia,   ei ole näiden pisteiden kautta kulkevalla suoralla ja   ja   ovat mielivaltaisia pisteitä suorilla   ja  , niin   ja   ovat kollineaarisia jos ja vain jos  , missä pituudet ovat suunnatut.[6]

Esimerkkejä kollineaarisuudestaMuokkaa

Yleisen kolmion keskijanojen leikkauspiste (painopiste), kolmion kulmanpuolittajien leikkauspiste, keskinormaalien leikkauspiste, korkeusjanojen leikkauspiste (ortokeskus) ja kolmion ympäri piirretyn ympyrän keskipiste ovat kollineaariset. Suoraa kutsutaan Eulerin suoraksi.[7][8]

LähteetMuokkaa

  • Harju, Tero: Geometrian lyhyt kurssi (pdf) (luentomoniste) users.utu.fi. 2012. Turun yliopisto. Viitattu 5.4.2013.

ViitteetMuokkaa

  1. a b c d e Weisstein, Eric W.: Collinear (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)
  2. Harju, Tero: Geometrian lyhyt kurssi, 2012, s.18
  3. Harju, Tero: Geometrian lyhyt kurssi, 2012, s.5
  4. Harju, Tero: Geometrian lyhyt kurssi, 2012, s.23
  5. Harju, Tero: Geometrian lyhyt kurssi, 2012, s.24
  6. http://yufeizhao.com/olympiad/geolemmas.pdf
  7. Harju, Tero: Geometrian lyhyt kurssi, 2012, s.25
  8. Weisstein, Eric W.: Euler Line (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)