Avaa päävalikko

Suurimman uskottavuuden estimointi on tilastotieteellinen menetelmä, jota käytetään tilastollisen mallin parametrien estimointiin. Suurimman uskottavuuden menetelmä maksimoi uskottavuusfunktion mallin parametrien suhteen.

HistoriaMuokkaa

Suurimman uskottavuuden estimointi on alun perin Ronald Fisherin vuosina 1912–1922 esittelemä ja nimeämä menetelmä. Alkuperäistä teoriaa ovat sittemmin paikkailleet niin Fisher kuin myös Abraham Wald ja Harald Cramér, jotka molemmat tekivät lisärajoituksia teorian oletuksiin.

Suurimman uskottavuuden historian voidaan kuitenkin katsoa alkavan jo paljon aikaisemmin. Joseph-Louis Lagrange päätteli jo vuonna 1769, että halutun keskiarvon todennäköisin arvo on havaintojen aritmeettinen keskiarvo. Myös muun muassa Jakob Bernoullin (1769, 1778) ja Pierre-Simon Laplacen (1774) voidaan katsoa käyttäneen menetelmää. Carl Friedrich Gauss esitteli vuonna 1809 pienimmän neliösumman menetelmän, jonka tuottamat estimaatit ovat myös suurimman uskottavuuden estimaatteja silloin, kun satunnaisvirheet ovat normaalijakautuneita. Karl Pearson ja L.N.G Filon käsittelivät vuonna 1898 yleisen tason estimointiongelmaa, jossa on joukko moniulotteisia havaintoja, joiden jakauma riippuu tuntemattomista parametreista.[1]

Karl Pearson kritisoi Fisheriä ja suurimman uskottavuuden menetelmää siitä, ettei menetelmä uusi, vaan vain muunnos Gaussin esittämästä menetelmästä. Arthur Bowley vertasi suurimman uskottavuuden menetelmää Francis Ysidro Edgeworthin vuosina 1908-1909 tekemään työhön.[1][2]

MääritelmäMuokkaa

Suurimman uskottavuuden menetelmän käyttämiseksi tarvitaan uskottavuusfunktio.

Olkoon

  •   on vektori, joka sisältää uskottavuusfunktion parametrit
  •   on  havainnon otos (data)
  •   on datan todennäköisyysjakauman tiheysfunktio

Uskottavuusfunktio voidaan nyt määritellä seuraavasti

 

Menetelmä etsii  :lle sellaisen estimaatin, joka maksimoi uskottavuusfunktion L(θ) arvon. Suurimman uskottavuuden estimaattori määritellään siis seuraavasti:

 

Usein oletetaan, että havainnot ovat toisistaan riippumattomia ja samoin jakautuneita. Tällöin voidaan lauseke kirjoittaa muotoon

 

Koska lineaarisen ja logaritmisen funktion ääriarvot löytyvät samoista pisteistä, voidaan sama esittää myös logaritmifunktioiden avulla, jolloin kertolaskun sijaan voidaan käyttää log-uskottavuutta, eli summaa

 

Suurimman uskottavuuden menetelmä estimoi θ0:n etsimällä sellaisen θ:n arvon, joka maksimoi uskottavuusfunktion. Tämä estimointimenetelmä määrää θ0:n suurimman uskottavuuden estimaatin

 

mikäli sellainen on olemassa. Suuriman uskottavuuden estimaatti on sama riippumatta siitä, maksimoidaanko uskottavuus- vai log-uskottavuusfunktiota, sillä logaritmi on monotonisesti kasvava funktio.

OminaisuuksiaMuokkaa

Suurimman uskottavuuden estimaattoreilla ei ole optimaalisia ominaisuuksia äärellisillä otoksilla.[3] Suurimman uskottavuuden estimointimenetelmä kuitenkin omaa useita haluttuja ominaisuuksia: Otoskoon kasvaessa kohti ääretöntä suurimman uskottavuuden estimaattoreilla on seuraavat ominaisuudet:

  • Tarkentuvuus: suurimman uskottavuuden estimaatit konvergoivat kohti estimoitavaa arvoa
  • Asymptoottinen normaalisuus: otoskoon kasvaessa suurimman uskottavuuden estitmaattien jakauma lähestyy normaalijakaumaa
  • Tehokkuus, eli se saavuttaa Cramér–Rao alarajan otoskoon lähestyessä ääretöntä. Tämä tarkoittaa sitä, ettei millään tarkentuvalla estimaattorilla ole alhaisempaa keskineliövirhettä kuin suurimman uskottavuuden estimaatilla

EsimerkkejäMuokkaa

Jatkuva jakauma, jatkuva parametriavaruusMuokkaa

Normaalijakaumalla   on tiheysfunktio

 

jolloin yhteistiheysfunktio n:n kokoiselle otokselle riippumattomia ja identtisesti jakautuneita normaalisia satunnaismuuttujia on

 

eli

 

missä   on otoksen keskiarvo.

Tällä jakaumaperheellä on kaksi parametria θ = (μσ), joten maksimoimme uskottavuuden,  , molempien parametrien suhteen.

Nyt voidaan laskujen helpottamiseksi käyttää log-uskottavuutta, sillä sen maksimoivat samat parametrien arvot jotka maksimoivat uskottavuuden.

 

josta saadaan ratkaisu  :n estimaatiksi

 

Joka on funktion maksimi  :lle, sillä se on funktion ainoa käännepiste ja funktion toinen derivaatta on pienempi kuin nolla. Koska  :n odotusarvo on annetun jakauman parametrin   arvo,

 

niin suurimman uskottavuuden estimaattori   on harhaton.

Vastaavasti derivoidaan log-uskottavuus σ:n suhteen ja asetetaan tulos nollaksi:

 

jonka ratkaisu on

 

ja sijoittamalla   saadaan

 

Nyt odotusarvo voidaan laskea merkitsemällä  , jolloin saadaan estimaatiksi

 

ja hyödyntämällä tietoa   ja  , saadaan

 

Tämä tarkoittaa sitä, että   on harhainen. Mutta   on kuitenkin tarkentuva.

Formaalisti sanotaan, että   :n suurimman uskottavuuden estimaattori on:

 

Riippuvat muuttujatMuokkaa

Moniulotteista normaalijakaumaa noudattavat satunnaismuuttujat X ja Y ovat riippumattomia vain, mikäli niiden yhteistiheysfunktio on niiden tiheysfunktioiden tulo, eli

 

Olkoon nyt kokoa n oleva vektori satunnaismuuttujia  , jossa jokaisella muuttujalla on keskiarvo  . merkitään lisäksi kovarianssimatriisi  :lla.

Tällöin näiden n:n satunnaismuuttujan yhteistiheysfunktio on

 

Kahden muuttujan tapauksessa yhteistiheysfunktioksi saadaan

 

Tällaisissa tapauksissa, joissa yhteistiheysfunktio on olemassa uskottavuusfunktio määritellään, kuten yllä määritelmässä.

Lisätietoa muuallaMuokkaa

  • In Jae Myung: Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 2002. [1]
  • Stock, James H. - Watson, Mark W.: Introduction to Econometrics. Addison Wesley, 2003.

LähteetMuokkaa

  1. a b Stigler, Stephen M. (2007). "The Epic Story of Maximum Likelihood". Statistical Science 22 (4): 598–620. doi:10.1214/07-STS249. 
  2. Aldrich, John (1997). "R. A. Fisher and the making of maximum likelihood 1912–1922". Statistical Science 12 (3): 162–176. doi:10.1214/ss/1030037906. 
  3. Pfanzagl, Johann (1994). Parametric statistical theory, with the assistance of R. Hamböker, Berlin, DE: Walter de Gruyter, 207–208. ISBN 3-11-013863-8.