Avaa päävalikko
Biot'n ja Savartin lain mukaan johtimessa kulkeva sähkövirta I synnyttää johtimen ympärille magneettikentän B.

Biot'n ja Savartin laki on sähkömagnetismia kuvaava laki, jolla on myös sovelluksia aerodynamiikassa. Alun perin laki kuvaa vakiosähkövirran synnyttämää magneettikenttää. Yksinkertaisen analogian avulla laki voidaan ulottaa myös laskemaan pyörteiden synnyttämiä ilman nopeuksia.

Biot'n ja Savartin laki seuraa Ampèren laista. Se on nimetty ranskalaisten fyysikoiden Jean Baptiste Biot'n (1774–1862) ja Felix Savartin (1791–1841) mukaan.[1] Kaava kertoo, että jos määrittelemme differentiaalisen virta-alkion , niin sitä vastaava differentiaalinen magneettivuon tiheys on [2][3]

missä

on tyhjiön permeabiliteetti
on virta ampeereina
on virta-alkion differentiaalinen pituusvektori
on tarkasteltavan magneettikentän pisteen paikkavektori
on yksikkövektori virta-alkiosta tarkasteltavaan magneettikentän pisteeseen
on etäisyys virta-alkiosta tarkasteltavaan magneettikentän pisteeseen (vektorin pituus).

Integroimalla tätä suljetun virtasilmukan yli saadaan silmukan synnyttämä magneettikenttä määritettyä mielivaltaisessa pisteessä [2][4]

.

Ei-origokeskinen muotoMuokkaa

 
Magneettivuon tiheys pisteessä   aiheutuu useasta differentiaalisesta kentästä  , kuten pisteessä   esitetyn virta-alkion kentästä. Tarkastelija sijaitsee origossa ( ).

Yllä esitetty muoto differentiaaliselle magneettivuon tiheydelle pätee vain tapauksessa, jossa tarkastelija (eli origo) sijaitsee tarkasteltavassa magneettikentän pisteessä. Jos tarkastelija on systeemin ulkopuolinen, täytyy yhtälöön tehdä pieniä muutoksia.

Tarkastellaan virtajohdinta, jossa kulkee sähkövirta  . Kiinnitetään johtimen mielivaltaiseen pisteeseen   virta-alkion differentiaalinen pituusvektori  . Merkitään vektoria   (pisteen   paikkavektori)  :llä ja vektoria   (pisteen   paikkavektori)  :lla. Vektorien laskusääntöjen nojalla vektori   on tällöin  . Biot'n ja Savartin lain yleinen muoto saadaan korvaamalla edellä esitetyssä muodossa vektori   vektorilla  . Tällöin magneettivuon tiheys pisteessä   origosta katsottuna on:

 . [4]

Merkintä   tarkoittaa vektorin   normia eli pituutta. Integraalimuoto saadaan vastaavasti:

 . [4]

Ei-origokeskisen muodon etu on se, että sen avulla magneettivuon tiheys on hyvin määritelty myös, jos   on johtimen piste (jolloin alkuperäisessä yhtälössä  ). Tällöin tosin magneettivuon tiheys on nolla, sillä  .

EsimerkkejäMuokkaa

Pitkän, suoran virtajohtimen magneettikenttäMuokkaa

Lasketaan (äärettömän) pitkän, ohuen,  -akselilla kulkevan virtajohtimen magneettivuon tiheys johtimen ulkopuolella etäisyydellä  . Johtimessa kulkee sähkövirta  .

Ratkaisu:

Käytetään hyödyksi edellisen kappaleen kuvaa ja merkintöjä. Origo sijaitsee nyt johtimessa, sillä se on  -akselin nollapiste. Koska ollaan kiinnostuneita vain etäisyyden vaikutuksesta magneettivuon tiheyteen, on helpointa valita piste   siten, että siitä kohtisuorasti johtimeen vedetty jana osuu origoon. Piste   sijaitsee myös  -akselilla.

Virtajohdin kulkee  -akselilla, joten virta-alkio on

 ,

missä   on  -akselin kantavektori. Jos virta käännetään vastakkaissuuntaiseksi, korvataan kantavektori  :lla. Muut vektorit ja niiden pituudet ovat:

 

Merkitään ristituloa varten vektoreiden   ja   välistä kulmaa  :lla. Trigonometrian avulla huomataan, että

 .

Lasketaan magneettivuon tiheys (suuruus) pisteessä   käyttäen Biot'n ja Savartin lain ei-origokeskistä muotoa. Koska johdin on äärettömän pitkä, ovat integrointirajat  .

 

LähteetMuokkaa

  1. a b Lindell, Ismo: Sähkön pitkä historia, s. 124. 3. painos. Helsinki: Otatieto, 2009. ISBN 978-951-672-358-0.
  2. a b c Voipio, Erkki: Sähkö- ja magneettikentät, s. 97–100. Moniste 381. Espoo: Otakustantamo, 1987. ISBN 951-672-038-2.
  3. Biot-Savart law (html) PlanetPhysics. (englanniksi)
  4. a b c I. S. Grant & W. R. Phillips: ”4.4.2”, Electromagnetism, 2. painos, s. 138. Wiley, 2003. ISBN 0-471-92712-0. (englanniksi)

KirjallisuuttaMuokkaa

  • Lindell, Ismo & Sihvola, Ari: Sähkömagneettinen kenttäteoria 1. Staattiset kentät. Helsinki: Otatieto, 2013. ISBN 978-951-672-354-2.
Tämä fysiikkaan liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.