Neliöksi täydentäminen

Neliöksi täydentäminen on algebrallinen menetelmä toisen asteen yhtälön ratkaisemiseksi. Neliöksi täydentämistä voidaan soveltaa myös integraaleja laskettaessa.

Neliöksi täydentäminen esitettynä neliölauseke tulkittuna pinta-alaksi.

Menetelmän tavoitteena on päästä muodosta (1) muotoon (2) . Tässä vakiot a', b', c' riippuvat vain vakioista a, b, c. Nyt muodon (2) avulla saadaan helposti ratkaistua polynomin (1) nollakohdat.

Neliöksi täydennyksessä otetaan ensimmäisen asteen termin kertoimen puolikkaan neliö, ja lisätään ja vähennetään se. Tälle toimenpiteelle on voimassa ehto, että toisen asteen termin kerroin on 1.

Esimerkki 1

muokkaa

Halutaan tietää mitkä muuttujan x arvot toteuttavat yhtälön:

 .

Täydennetään neliöksi lisäämällä ja vähentämällä 1.

 

Välivaiheittain:

(1) Otetaan termin  :n kerroin yhteiseksi tekijäksi ja toteutetaan ehto, että toisen asteen termin kerroin on yksi.

 

(2) Täydennetään neliöön: ts. otetaan ensimmäisen asteen kertoimen, eli  :n, puolikkaan neliö   ja lisätään ja vähennetään se.

 

(3) Poistetaan hakasulkeet, jolloin

 

Nyt yhtälö ratkeaa helposti

 

Siis x on joko 0 tai -1.

Esimerkki 2

muokkaa

Toisen asteen polynomifunktion neliöksi täydentäminen tehdään yleisesti seuraavasti:

 

Menetelmästä on se etu, että funktion käännepiste voidaan määrittää turvautumatta derivointiin. Käännepiste saadaan yhtälöstä  . Funktion arvo tässä pisteessä on siten  .

Funktion neliöksi täydentäminen tarkoittaa myös koordinaatiston origon. Jos funktio on täydennetyssä muodossaan

 ,

sille saadaan myös seuraava muoto

 

Merkitään

 

Tällöin alkuperäinen funktio saadaan muotoon

 ,

ja alkuperäinen origo on pisteessä

 , jolloin siis
 

Esimerkki 3

muokkaa

Tehtävä: kirjoita hyperbelin   yhtälö perusmuotoon:  ,  


(1) Järjestellään termit mieleiseksi, eli vakiot yhtälön oikealle puolelle ja tuntemattomat vasemmalle. Järjestellään x:t ja y:t.

 

(2) Ryhmitellään lausekkeet sellaisiksi, että toisen asteen termien kertoimet ovat sulkeiden sisällä 1. Otetaan x-termien yhteinen kerroin 9 ja y-termien kerroin -1 ulkopuolelle.

 

(3) Täydennetään neliöksi - lisätään ja vähennetään ensimmäisen asteen termien kertoimien puolikkaiden neliöt.

 

(4) Poistetaan hakasulkeet, ja eliminoidaan puolittain "ylimääräinen" neljäs vakio x:n ja y:n lausekkeesta:

 

(5) Jolloin jää:

 


Tämä matematiikkaan liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.