Alkulukufunktio

Alkulukufunktio on matematiikan funktio, jolla lasketaan reaalilukua x pienempien tai yhtäsuurten alkulukujen lukumäärää.[1][2][3] Funktion merkintä on (Kaavassa π(x) ei viitata lukuun π.)

Funktion π(n) ensimmäiset 60 lukua.

HistoriaaMuokkaa

1700-luvulla löysivät Gauss ja Legendre että

 

on hyvä approksimaatio alkulukufunktiolle; tarkemmin,

 

Tämä lauseke tunnetaan alkulukulauseena; se todistettiin 1800-luvun lopulla oikeaksi. Väite voidaan kirjoittaa yhtäpitävästi muodossa

 

jossa  on logaritminen integraalifunktio.

Littlewoodin lauseMuokkaa

John Littlewood todisti 1914 että on olemassa mielivaltaisen suuria lukuja x, joille

 

ja mielivaltaisen suuria lukuja x, joille

 

Tästä seuraa että erotuksen π(x) − li(x) merkki vaihtuu äärettömän usein.

Riemannin hypoteesiMuokkaa

Riemannin hypoteesi on ekvivalentti seuraavaan kaavaan:

 

Riemannin hypoteesi siis antaisi alkulukufunktion antamalle arviolle alkulukujen määrästä huomattavasti nykyistä tiukemmat virherajat.

LähteetMuokkaa

  1. A table of prime counts pi(x) to 1e16
  2. Algorithmic Number Theory, s. volume 1 page 234 section 8.8. MIT Press.
  3. Prime Counting Function MathWorld.
Tämä artikkeli tai sen osa on käännetty tai siihen on haettu tietoja muunkielisen Wikipedian artikkelista.
Alkuperäinen artikkeli: en:Prime-counting function