Avaa päävalikko
Esimerkki satulapisteestä (punaisella): sola vuorten välissä

Matematiikassa satulapisteellä tarkoitetaan funktion määrittelyjoukon pistettä, joka on funktion stationaaripiste, mutta joka ei kuitenkaan ole funktion paikallinen maksimi/minimi. Esimerkki satulapisteestä on vuorten välissä oleva sola tai kaksiulotteisessa koordinaatistossa toiseen suuntaan nouseva ja toiseen suuntaan laskeva käyrä.

Matemaattinen määritelmäMuokkaa

Funktiolla   on satulapiste pisteessä   jos:

 

  pisteessä  

  pisteessä  

Todistus löytyy lähteenä olevasta Widderin kirjasta.

Määritelmä Hessen matriisin avullaMuokkaa

Reaaliarvoisella funktiolla ƒ ei ole satulapiste vaan paikallinen maksimi tai minimi, jos funktion Hessen matriisi on positiivisesti tai negatiivisesti definiitti matriisi. Hessen matriisi on reaaliarvoisen funktion toinen derivaatta. Jos (kahdessa ulottuvuudessa) matriisin determinantti on negatiivinen, ovat ominaisarvot erimerkkiset ja kyseessä on satulapiste. Jos determinantti on nolla, testi ei kerro mitään kyseisestä pisteestä. Hessen matriisi yleisessä n-ulotteisessa tapauksessa (jolloin satulapisteen käsite ei ole niin yksiselitteinen):

 

Toinen tapa esittää sama asia: Merkitään edellisen matriisin determinanttia tunnuksella  . Funktion   determinantti on (kahdessa ulottuvuudessa)

 

Jos  , niin kyseinen piste on satulapiste.

Determinantti   voidaan tulkita myös pinnan   Gaussin kokonaiskaarevuudeksi tarkastelupisteessä   missä funktion ensimmäiset osittaisderivaatat häviävät.

EsimerkkiMuokkaa

Tarkastellaan funktiota  . Funktion Hessen matriisi stationaaripisteessä   on  

Nyt matriisin   determinantti  , joten kyseinen piste   on satulapiste.

SovelluksetMuokkaa

Dynaaminen systeemi: Dynaamisessa systeemissä satulapiste on jaksollinen piste, jonka vakaat ja epävakaat monikerrat omaavat nollasta eroavan ulottuvuuden.

Kahden henkilön nollasummapeli: Nashin tasapaino on satulapiste.

Satulapiste on matriisin ominaisuus, joka on samalla suurin elementti sarakkeessaan, sekä pienen elementti rivissään.

Katso myösMuokkaa

LähteetMuokkaa

  • Hilbert, David; Cohn-Vossen, Stephan (1952), Geometry and the Imagination (2nd ed.), New York: Chelsea, ISBN 978-0-8284-1087-8
  • Widder, D. V. (1989), Advanced calculus, New York: Dover Publications, pp. page 128, ISBN 0-486-66103-2
  • Englanninkielinen Wikipedia