Pythagoraan kolmikko

Pythagoraan kolmikko on joukko, joka koostuu kolmesta positiivisesta kokonaisluvusta a, b ja c siten, että a2 + b2 = c2. Kolmikko ilmoitetaan yleensä muodossa (a, b, c), ja yksi tällainen esimerkki on (3, 4, 5). Jos (a, b, c) on Pythagoraan kolmikko, myös (ka, kb, kc) jokaiselle positiiviselle kokonaisluvulle k on.

Pythagoraan kolmikoiden jakautuminen välillä < 4500.

Pythagoraan kolmikon nimi juontuu Pythagoraan lauseesta, jonka ratkaisu jokainen Pythagoraan kolmikko on. Kuitenkaan Pythagoraan lauseen kaikki ratkaisut eivät ole Pythagoraan kolmikoita. Esimerkiksi a = b = 1 ja c = √2 on Pythagoraan lauseen yksi ratkaisu, mutta (1, 1, √2) ei ole Pythagoraan kolmikko, koska √2 ei ole kokonaisluku vaan irrationaaliluku.

MuunnelmiaMuokkaa

Joukkoa, joka koostuu neljästä positiivisesta kokonaisluvusta a, b, c ja d, jotka ratkaisevat yhtälön a2 + b2c2 = d2, kutsutaan Pythagoraan nelikoksi.

Ranskalainen matemaatikko Pierre de Fermat väitti vuonna 1637, ettei ole olemassa positiivisista kokonaisluvuista a, b ja c koostuvaa kolmikkoa, joka ratkaisisi yhtälön an + bn = cn, missä n on kahta suurempi kokonaisluku. Väittämä tunnetaan Fermat'n suurena lauseena, jonka todisti Andrew Wiles vuonna 1995.

On olemassa neljän positiivisen kokonaisluvun a, b, c ja d joukkoja, jotka ratkaisevat yhtälön a3 + b3c3 = d3. Pienin tällainen joukko on (3, 4, 5, 6).

Aiheesta muuallaMuokkaa

 
Wikimedia Commonsissa on kuvia tai muita tiedostoja aiheesta Pythagoraan kolmikko.
Tämä matematiikkaan liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.