Topologinen avaruus

matemaattinen rakenne

 

Neljä esimerkkiä ja kaksi epäesimerkkiä joukon {1,2,3} topologioista. Alhaalla vasemmalla ei ole topologia, koska joukkojen {2} ja {3} unioni {2,3} puuttuu; vastaavasti alarivissä oikealla puuttuu joukkojen {1,2} ja {2,3} leikkaus {2}.

Topologiset avaruudet ovat yksinkertaisimpia matemaattisia rakenteita, joissa voidaan määritellä sellaisia käsitteitä kuin avoimuus, jatkuvuus, homeomorfisuus ja yhtenäisyys.

Määritelmä muokkaa

Topologinen avaruus on järjestetty pari  , missä   on joukko ja   on sellainen sen osajoukkojen kokoelma (ns. topologia), jonka jäseniä ovat

  1. tyhjä joukko ja joukko   itse,
  2. kaikki sen alkioiden mielivaltaiset yhdisteet,
  3. kaikki sen alkioiden äärelliset leikkaukset,

ts.   toteuttaa topologiset aksioomat

  1.  
  2.  
  3.  .[1]

Käytännössä yleensä tutkitaan äärettömiä topologioita. Äärellinen topologia voi olla helpommin ymmärrettävä esimerkki joistakin topologian peruskäsitteistä, mutta toiset käsitteet ovat mielekkäitä vain äärettömissä joukoissa. Äärettömään joukkoonkin voidaan määrittää topologia, jossa on äärellinen määrä alkioita (esimerkiksi koko  , tyhjä joukko ja vain luvun 1 sisältävä joukko muodostavat topologian reaalilukujen joukolle), mutta käytännön merkitystä niillä ei juuri ole.

Topologian ei tarvitse sisältää alkioidensa mielivaltaisia leikkauksia, ainoastaan äärelliset. Esimerkki: Määritellään joukon N kofiniittinen topologia: siihen kuuluu tyhjä joukko ja jokainen joukko, jonka komplementti on äärellinen. Joukko   on selvästi äärellinen, jolloin sen komplementtijoukko   kuuluu mainittuun topologiaan. Kaikkien näiden joukkojen leikkaus puolestaan on joukko  , joka on äärellinen, eikä siis kuulu mainittuun topologiaan.

Topologiseen avaruuteen liittyviä käsitteitä muokkaa

Osa käsitteistä pohjautuu reaaliluvuille määriteltyyn topologiaan, johon kuuluvat avoimet välit ja niiden yhdistelmät. Esimerkiksi   ja   ovat avoimia välejä, niiden komplementti   suljettu väli.

Topologisen avaruuden alkioita sanotaan yleensä pisteiksi.[1]

Kokoelmaan   kuuluvia joukkoja sanotaan topologisen avaruuden avoimiksi joukoiksi. Joukot, joiden komplementti X:ssä on avoin, ovat suljettuja joukkoja. Termit ovat epäintuitiivisia: joukko voi olla avoin, suljettu, ei kumpaakaan tai molempia. Esimerkiksi edellä mainitussa reaalilukujen tavallisessa topologiassa joukko   ei ole avoin eikä suljettu. Jokaisessa topologisessa avaruudessa ainakin koko joukko   ja tyhjä joukko ovat sekä avoimia että suljettuja.[1]

Jos joukon pisteitä ei voi jakaa kahteen erilliseen avoimeen joukkoon, joukkoa sanotaan yhtenäiseksi. Jos näin on kaikkien pisteiden suhteen, koko avaruus on yhtenäinen.[2]

Jos topologisen avaruuden mitä tahansa kahta eri pistettä   ja   kohti on olemassa sellaiset avoimet joukot   ja  , että

  ja  

ts. pisteille   ja   löytyy aina erilliset ympäristöt, sanotaan avaruutta Hausdorffin avaruudeksi.[3]

Kantapisteavaruus on topologinen avaruus, jossa yksi piste, kantapiste, on asetettu erikoisasemaan.

Avaruuksien luokittelua muokkaa

 
Havainnollistus erotteluaksioomista.

Avaruus on  , jos jokaiselle pisteparille   löytyy avoin joukko, johon joko   kuuluu mutta   ei, tai toisinpäin.[3]

Avaruus on  , jos jokaiselle pisteparille   löytyy sekä avoin joukko, johon   kuuluu mutta   ei, että avoin joukko johon   kuuluu mutta   ei.[3] Nämä avoimet joukot saavat sisältää yhteisiä pisteitä.

Avaruus on   eli Hausdorffin avaruus, jos jokaiselle pisteparille   löytyy sekä avoin joukko, johon   kuuluu mutta   ei, että avoin joukko johon   kuuluu mutta   ei, ja näillä avoimilla joukoilla ei ole yhteisiä pisteitä.[3]

Luonnollisten lukujen topologia, joka sisältää tyhjän joukon ja koko joukon lisäksi vain parilliset ja parittomat luvut avoimina joukkoina, ei ole  . Luonnollisten lukujen alkusegmenttitopologia, jossa avoimia ovat joukot   kaikilla termin   arvoilla on   mutta ei  . Luonnollisten lukujen kofiniittinen topologia on   mutta ei  . Tyyppiesimerkki  -topologiasta on reaalilukujen tavallinen topologia, jossa avoimia ovat avoimet välit ja niiden unionit.

Esimerkkejä muokkaa

Mistä tahansa joukosta   voidaan muodostaa topologinen avaruus määrittelemällä kokoelmaan   kuuluviksi ainoastaan joukko   ja tyhjä joukko. Tällainen topologinen avaruus ei ole Hausdorffin avaruus, paitsi jos joukkoon   kuuluu vain yksi piste. Tällaista topologiaa sanotaan minitopologiaksi.[1]

Mistä tahansa joukosta   voidaan myös muodostaa topologinen avaruus määrittelemällä kokoelmaan   kuuluviksi  :n kaikki osajoukot. Tällöin kyseessä on niin sanottu diskreettitopologia, ja muodostettu avaruus on Hausdorffin avaruus.[1]

Jokaisesta metrisestä avaruudesta voidaan muodostaa topologinen avaruus määrittelemällä kokoelmaan   kuuluviksi eli avoimiksi joukoiksi sellaiset  :n osajoukot, joiden jokaisella pisteellä on tähän osajoukkoon sisältyvä ympäristö. Tällaiset topologiset avaruudet ovat aina Hausdorffin avaruuksia.

Sovellusten kannalta tärkeimpiä metrisiä avaruuksia ovat joukot   (eriulotteiset euklidiset avaruudet) ja niiden osajoukot, joissa topologia on edellä sanotulla tavalla määritelty euklidisen metriikan avulla. Tästä yleistys on Hilbertin avaruus, joka on (mahdollisesti ääretönulotteinen) täydellinen sisätuloavaruus.

Katso myös muokkaa

Lähteet muokkaa

  1. a b c d e Väisälä, Jussi: Topologia II, s. 4–5. Helsinki: Limes ry, 1981. ISBN 951-745-082-6.
  2. Väisälä, s. 53
  3. a b c d Väisälä, s. 44

Kirjallisuutta muokkaa

Aiheesta muualla muokkaa