20 299
muokkausta
(Neutraalimmaksi, Deolalikarin todiste ei ole vielä käynyt läpi peer-reviewtä?) |
|||
[[Laskettavuus]]teoriassa '''NP-täydelliset''' ongelmat ovat laskennallisesti erittäin vaativia ongelmia. Ne ovat luokan NP (epädeterministisellä [[Turingin kone]]ella [[polynomi]]aalisessa ajassa ratkeavien ongelmien joukko) vaikeimmat ongelmat. Polynomiaikaisen ratkaisun löytyminen NP-täydelliseen ongelmaan deterministisellä Turingin koneella (tai millä tahansa nykyisellä tietokoneella) johtaisi polynomiaikaisen ratkaisun olemassaoloon kaikille muillekin luokan NP ongelmille. Tämä tarkoittaisi sitä, että [[P=NP]], eli kaikki epädeterministisellä Turingin koneella polynomiaalisessa ajassa ratkeavat ongelmat ovat myös deterministisellä Turingin koneella polynomiaalisessa ajassa ratkeavia.
NP-täydellisten ongelmien ratkaisemiseen tunnetaan ainoastaan eksponentiaalisen ajan vieviä algoritmeja.
Tunnettuja NP-täydellisiä ongelmia ovat mm. [[kauppamatkustajan ongelma]], [[Hamiltonin polku|Hamiltonin syklin]] tai polun löytäminen [[graafi]]sta, Boolen lausekkeiden toteutuvuusongelma ja graafin väritys.
|