Ero sivun ”Homotetiakeskus” versioiden välillä

20 merkkiä lisätty ,  2 vuotta sitten
p
päivitys
Ei muokkausyhteenvetoa
p (päivitys)
'''Homotetiakeskus''' on yksi [[euklidinen geometria|euklidisen geometrian]] peruskäsitteistä. Sitä voidaan kuvailla samankaltaisuuden tai vastaavuuden keskukseksi. Homotetiakeskus on piste, josta vähintään kaksi geometrisesti samanmuotoista kuviota voidaan nähdä suurempana tai pienempänä suhteessa toisiinsa. Termiä käytetään myös yleisesti [[Analyyttinen geometria|analyyttisessa geometriassa]].
 
[[Image:Homothetic transformation.svg|thumb|right|Kuva 1.]]
==Homotetiakeskuksen sijainti==
 
Homotetiakeskus voi sijata kuvioiden ulko- tai sisäpuolella. Jos ulkopuolinen piste on sijainniltaan molempien kuvioiden ulkopuolella ja niiden koko on suhteessa homotetiakeskukseen (kuva 1).
 
Homotetiakeskus saattaa olla myös siis sisäpuolinen piste. Tuolloin piste sijaitsee kappaleiden välissä (kuva 2). Ympyröillä on aina sisä- sekä ulkopuolinen homotetiakeskus.
==Monikulmiot yleisesti==
 
Kun kahdella geometrisella kuviolla on yhteinen homotetiakeskus, niin ne ovat yhtenäisiä toisiinsa nähden. Toisin sanojen, kuvioilla tulee olla samat kulmat vastaavissa pisteissä ja eroja voi olla ainoastaan suhteellisessa skaalautuvuudessa. Kuviot voidaan liittää toisiinsa projektiolla homotetiakeskuksesta. Homotetiakeskus voi olla joko ulkoinen tai sisäinen. Jos keskus on sisäinen, vähintään kaksi geometristä kuviota ovat skaalautuvia peilikuvia keskenään. Tämä voidaan ajatella myös, että myötäpäiväinen kulma yhdessä kuviossa vastaa toisen kuvion vastapäiväistä kulmaa.
 
Jos keskus on ulkoinen, kaksi kuviota ovat suoraan samanlaisia keskenään ja ne voidaan havaita peräkkäin toistuvina (kuva 1). Tärkeää on huomioida, että kuvioiden vastaavat kulmat ovat yhtä isot kuvion toistuessa.
 
[[Image:Circles homothetic centers.svg|thumb|right|300px|Kuva 2.]]
==Ympyrä==
 
Ympyrät ovat euklidisen geometrian mukaisesti yhdenmuotoisia ja peilikuvallisesti symmetrisiä. Tämän vuoksi millä tahansa ympyräparilla on molemmat homotetiakeskukset, eli ulkoiset ja sisäiset. Ympyröiden homotetiakeskus sijaitsee ympyröiden yhteisellä keskilinjalla.
 
Homotetiakeskukset löytyvät tutkimalla ja piirtämllä. Halkaisijat piirretään molempiin ympyröihin niin, että ne tekevät saman kulman yhdessä keskilinjan kanssa. Halkaisijoiden tulee olla samansuuntaiset. ja kulma α molemmissa ympyröissä sama (kuva 2). Piirretään suorat ympyröiden kaarella vastaaviin pisteisiin, niin saadaan suorat yhdistymään ulkoiseen homotetiakeskuskseen, esimerkiksi esim. pisteet A1 ja A2 kuvassa 2.
 
Toisaalta jos piirretään suorat yhdestä kaaripisteestä täysin päinvastaiseen (diametriseen) kaaren pisteeseen, esimerkiksi pisteet A1 ja B2 (kuva 2) saadaan aikaiseksi kahden suoran leikkaus, jonka leikkauspisteessä sijaitsee sisäpuolinen homotetiakeskus. Nämä suorat saattavat olla myös ympyrän tangentteja, kuten suoran leikatessa pisteitä B1 ja A2 (kuva 2).
 
==Mittakaava==
<math>\vec{OP'} = k = \vec{OP}</math>
 
Tällöin saadaan kuviosta S’ homoteettinen kuvion S kanssa, jossa on käytetty mittakaavaa k. Jos esimerkiksi k >1, on kysymyksessä homoteettinen laajennus.
 
==Lähteet==