Avaa päävalikko

Aksioomaattinen lähestymistapaMuokkaa

Eukleideen teosta Alkeet pidetään aksiomaattisen matematiikan eräänä perusteoksena. Teoksessa Eukleides esittää viisi aksioomaa, joista hän johtaa loogisella päättelyllä satoja lähinnä geometrisia teoreemoja ja todistaa ne.

  1. Mitkä tahansa kaksi pistettä voidaan yhdistää suoralla.
  2. Mikä tahansa jana voidaan jatkaa äärettömäksi.
  3. Mille tahansa janalle voidaan piirtää ympyrä siten, että jana on ympyrän säde ja janan toinen päätepiste on ympyrän keskipiste.
  4. Kaikki suorat kulmat ovat yhtä suuria.
  5. Jos kaksi viivaa leikkaavat kolmannen siten, että sisempien kahden kulman summa on vähemmän kuin kaksi suoraa kulmaa niin nämä kaksi suoraa leikkaavat väistämättä toisensa kolmannen viivan sillä puolella, jolla ko. kulmat ovat, mikäli suoria jatketaan riittävän pitkiksi.

Viidettä aksioomaa kutsutaan yleensä paralleeliaksioomaksi. Sen tasolle pätevä muotoilu on: Pisteen, joka ei ole annetulla suoralla, läpi voidaan piirtää ainoastaan yksi suora joka ei leikkaa annettua suoraa. Epäeuklidisissa geometrioissa mahdollisten suorien määrä on muu kuin yksi.

Eukleideen aksioomista on sittemmin luovuttu matematiikan täsmällisyyden kehittyessä. David Hilbert kehitti nykyään käytössä olevat euklidisen geometrian aksioomat, Hilbertin aksioomat.

ParalleeliaksioomaMuokkaa

Viidennen eli paralleeliaksiooman epäiltiin pitkään olevan muiden Eukleideen aksioomien seurausta, jolloin sen voisi poistaa aksioomaluettelosta. Yrityksiä johtaa se muista aksioomista tehtiin paljon. Vasta 1800-luvulla pystyttiin osoittamaan, ettei paralleeliaksiooma seuraa muista Eukleideen aksioomista, ts. että on mahdollista muodostaa epäeuklidinen geometria, jossa kaikki muut Eukleideen aksioomat ovat voimassa, mutta paralleeliaksiooma ei. Asian voi nykyisin todistaa luomalla äärimmäisen yksinkertaisen, muutamasta pisteestä koostuvan tasogeometrian, jossa neljä ensimmäistä aksioomaa pätevät, mutta paralleeliaksiooma ei. Tällöin tulos yleistyy kaikkiin Eukleideen neljää ensimmäistä aksioomaa käyttäviin geometrioihin. Todistus on yksinkertainen, mutta tällainen ajattelu oli ennen modernin matematiikan syntyä vierasta - ajateltiin että euklidisen geometrian tulokset voi todistaa vain perinteisessä euklidisessa geometriassa.

Euklidinen etäisyysMuokkaa

Euklidisessa koordinaattigeometriassa tason pisteiden   ja   välinen etäisyys, ns. euklidinen etäisyys, lasketaan Pythagoran lausetta hyödyntäen:

 

LähteetMuokkaa

  1. Thompson, Jan & Martinson, Thomas: Matematiikan käsikirja, s. 96. Helsinki: Tammi, 1994. ISBN 951-31-0471-0.

KirjallisuuttaMuokkaa