Avaa päävalikko

−1 (luku)

kokonaisluku

−1 on matematiikassa negatiivinen kokonaisluku, joka on suurempi kuin −2 ja pienempi kuin 0. Se on siis suurin negatiivinen kokonaisluku.

Luku −1 on luvun 1 vastaluku, jolloin .

Luku −1 saadaan myös Eulerin yhtälöstä, kun : .

Algebrallisia ominaisuuksiaMuokkaa

Kun jokin luku kerrotaan −1:llä, luvun etumerkki vaihtuu:

 

Toisin sanoen luku muuttuu vastaluvukseen, kun se kerrotaan luvulla −1.

Kun luku −1 kerrotaan itsellään saadaan 1:  . Tämä on toinen tapa sanoa, että luku 1 on luvun −1 vastaluku.

KokonaislukupotenssitMuokkaa

Kun luku −1 korotetaan parilliseen kokonaislukupotenssiin saadaan arvo 1:  . Korotettaessa lukua parittomaan kokonaislukupotenssiin saadaan arvo −1:  .

On määritelty, että x−1 = 1/x, mikä tarkoittaa sitä, että luvun korottaminen potenssiin −1 on sama kuin luvun muuttaminen käänteisluvukseen. Luku –1 on itsensä käänteisluku:

 

Murtopotenssit: yhteys kompleksilukuihinMuokkaa

Kompleksilukujen teoriassa imaginaariyksikkö i on määritelty luvun −1 avulla:

 .[1]

Toisin sanoen, vaikka luvulla -1 ei ole neliöjuurta reaalilukujen joukossa, sille voidaan määritellä neliöjuuri  . Tämä johtaa kuntalaajennokseen: reaaliluvuista kompleksilukuihin.

Luku −1 liittyy Eulerin identiteettiin, sillä   Identiteetistä seuraa, että reaalilukupotenssiin korotus tuottaa yleisesti kompleksiluvun (jonka itseisarvo on 1):

 

Esimerkiksi jos taskulaskimessa ei ole kompleksilukumoodia, niin laskutoimitus   ei onnistu.

Esimerkki käytöstäMuokkaa

Luvun −1 avulla voidaan mallintaa esim. jaksollista binääristä lukujonoa b(n), n = 0, 1, 2, …

Jono 0 1 0 1 0 1 ... saadaan aikaan mallilla

 

Tilanmuutosten taajuutta voidaan säätää jakamalla indeksi n ja ottamalla lopputuloksesta kokonaislukuosa lattia-funktiolla. Esim. jono 0 0 0 1 1 1 0 0 0 1 1 1… saadaan mallilla

 

Jonon vaiheeseen voidaan vaikuttaa sijoittamalla indeksin n paikalle suurennettu tai pienennetty arvo, esimerkiksi

 

tuottaa jonon 0 0 1 1 1 0 0 0 1 1 1 0…

LähteetMuokkaa

  1. Simo K. Kivelä: Kompleksiluvut matta.hut.fi. 23.10.2012. Viitattu 27.7.2017.